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Chaotic transport of particles in two-dimensional periodic potentials driven by ac forces

R. Guantes* and S. Miret-Arte´s
Instituto de Matema´ticas y Fı́sica Fundamental, Consejo Superior de Investigaciones Cientı´ficas, Serrano, 123, 28006 Madrid, Spain
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The diffusive and directed transport of particles in a two-dimensional periodic potential subjected to fric-
tional and time-periodic forces is analyzed in detail. The model represents diffusion of atoms adsorbed on
metal surfaces under an appliedac electric field~surface electromigration! in the low-temperature limit. The
second dimension and the potential energy coupling are shown to play an important role on both diffusion and
net currents, depending on the direction of the drive. A properly chosen biharmonic field is able to control the
directed ratchetlike dynamics of atoms onsymmetricsurfaces, since current reversals take place by different
stabilization of attractors. Reversals identified with hysteresis loops between periodic running attractors are
robust against an increase of the second harmonic amplitude, and against temperature effects inside the
experimental range for measurements of surface diffusion.
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I. INTRODUCTION

The problem of transport in periodic potentials conce
different fields in physics, chemistry, and biology@1#. Some
of the most significant examples include motion of ions
superionic conductors@2#, current-voltage characteristics i
Josephson junctions@3# or diffusion of atoms adsorbed o
metal surfaces@4#. When noise plays a role on such system
but the noise intensity~namely, the scaled temperaturekT) is
much smaller than the barrier height for transport, the c
ceptual link between these seemingly distinct phenom
can be traced back to Kramers’ famous theory of activa
escape over a potential barrier@5–7#, particularized to peri-
odic potentials. Recently, there has been a renewed inte
in this issue due to the recognition that biological molecu
motors are able to produce directional motion of carg
along periodic structures@8#. Many different models have
been proposed in order to understand their basic phys
mechanism of operation@9#. The two necessary ingredien
are breaking of detailed balance~the system is driven awa
from thermal equilibrium due to deterministic or stochas
perturbations! and breaking of spatiotemporal symmetry. T
archetypal model reduces to the motion of a particle in
space periodic potential in the presence of friction, stocha
and/or deterministic forces. Out of the many different pos
bilities to induce directed transport, we will focus on a d
terministic time-periodic driving, neglecting in a first ap
proach thermal or stochastic forces, but considering frict
and inertial terms. The effect of adding a Gaussian wh
noise of weak intensity will be studied at the end.

Most of the theoretical models used so far to study tra
port in periodic potentials under nonequilibrium perturb
tions have been one dimensional, with a few exceptions@10–
15#. Here we will analyze in detail the classical dynamics
two dimensions, say (x,y), with the adiabatic potential bein
periodic along both directions. Despite the widespread ap
cability of the model~think of vortex and fluxon motion in
superconductors@13,16,17# or separation of macromolecule
in 2D devices@18,19#! specific details and parameters of t

*Electronic address: rgn@imaff.cfmac.csic.es
1063-651X/2003/67~4!/046212~11!/$20.00 67 0462
s

,

-
a
d

est
r
s

al

a
ic
i-
-

n
e

-
-

li-

potential will be particularized to the case of atomic diff
sion on metal surfaces under the effect of an ac electric fi
a phenomenon known assurface electromigration@20–22#.
The separability vs nonseparability of this potential will b
also discussed, stressing the main qualitative differences
well as the differences with the one-dimensional case. A
model we take a potential spatiallysymmetricin both dimen-
sions. Therefore, the existence of a net particle current
be eventually due to thetemporal asymmetryof the time
periodic driving. The onset of a stationary flux as we vary
parameter of the system~the driver amplitude! can be then
well investigated. Although the denominationratchet is usu-
ally reserved for those systems with spatial asymmetry@9#,
the dynamics exhibited under temporal asymmetry is v
similar to that found in underdamped ratchet systems@23–
26#.

The main purpose of the present paper is a detailed c
acterization of both thetransport and diffusivedeterministic
dynamics of atoms on a low-viscosity metal surface, un
additional ac forces of weak and strong amplitudes. The
ferent mechanisms giving rise to directed current will be a
analyzed, as well as the existence of multiplecurrent rever-
salswhich are a common phenomenon in inertial or und
damped ratchets@23–25#. Previous studies of surface ele
tromigration have been restricted to 1D, and have focused
the spatial asymmetry induced in the periodic potential
the Schwoebel barrier at the steps@20,21# or on the jump
distributions under weak periodic modulations@22#. Deter-
ministic diffusive transport in a 1D ratchet potential in th
adiabatic regime has been also studied recently@27#.

The classical dynamics of a particle moving on a tw
dimensional potential of mean force, with a time period
driving F(t) of zero average, neglecting thermal effects a
interactions with another particles, is described by the cou
of equations

mẍ52
]V~x,y!

]x
2h ẋ1F~ t !,

mÿ52
]V~x,y!

]y
2h ẏ1mF~ t !, ~1!
©2003 The American Physical Society12-1
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R. GUANTES AND S. MIRET-ARTÉS PHYSICAL REVIEW E67, 046212 ~2003!
wherem is the mass of the particle, the dissipation is su
posed to be due to the existence of an Ohmic friction te
with friction coefficient g5h/m, and m<1 is a constant
taking into account the projection of the driving force alo
thex andy directions. The potentialV(x,y) representing the
adiabatic interaction between an adatom and a periodic
strate symmetric in both directions is taken to be of the fo
@28,29#

V~x,y!5V02V1@cos~2px/a!1cos~2py/a!#

1V2cos~2px/a!cos~2py/a!, ~2!

whereV0 , V1, andV2 are constants anda is the period along
thex andy directions. By imposing that the potential is ze
at the minima, i.e.,V(0,0)50, and takingV(0,6a/2)5Vs
andV(6a/2,6a/2)5Vm , whereVs andVm are the energies
of the saddle points and maxima, respectively~barriers for
transport along the parallel directions or the diagonal dir
tions respectively!, one obtains the expression

V~x,y!5
Vm

4
1

Vs

2
2

Vm

4
@cos~2px/a!1cos~2py/a!#

1S Vm

4
2

Vs

2 D cos~2px/a!cos~2py/a!. ~3!

The periodic driving is of the form

F~ t !5E1cos~v1t !1E2cos~nv1t1f!, ~4!

with E2,E1 andn an integer or semi-integer number~har-
monic or subharmonic frequency!. For E250 the equations
of motion ~1! are unable to produce a net flux of particles
either direction. This is due to symmetry considerations@30#:
because equations~1! are invariant with respect to the sym
metry transformations (x,y)→(2x,2y) and t→t1T1/2
(T152p/v1) which change the sign of the velocities, ru
ning solutions of Eq.~1! with positive and negative veloci
ties alongx or y are equally probable, therefore the averag
over possible realizations gives a zero total flux. In order
break the temporal symmetry, we needE2Þ0 andn aneven
integer number, or a semi-integer. Here we will take a bih
monic driver,n52. Note that in the underdamped limitg
→0 ~Hamiltonian case! the symmetry transformationt→
2t1t0 also changes the sign of the velocity while leavi
the equations of motion invariant for a symmetric drivin
F(2t1t0)5F(t), therefore the conditionE2Þ0, fÞ0,p is
needed to produce a directed current. Moreover, in Ham
tonian systems it has been recently shown that a mixed p
space is necessary in order to observe directed curr
@31,32#. It is also worth noting that nonlinear nonadiaba
response to ac fields can be important to explain some r
fication mechanisms@33#.

Even in one dimension, the consideration of the iner
term and the time periodic force makes the dynamical sys
nonintegrable@34# giving rise to chaos for certain values o
the amplitudeE1 and the driving frequencyv1. The exis-
tence of periodic or chaotic attractors for a given set of ini
conditions is related to the presence or not of mode lock
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between the period of the particle inside the potential w
and the period of the external driverT1 @35#. Therefore, it is
convenient to rescale the equations of motion~1! to dimen-
sionless units@24,25# dividing distances by the spatial perio
a and times by the period of vibration of the particle close
the bottom of the potential well,T052p/v0, with v0

52pAVs/2ma2.
Then in rescaled units equations~1! read

ẍ52
]V~x,y!

]x
2bẋ2 f ~ t !,

ÿ52
]V~x,y!

]y
2bẏ2m f ~ t !, ~5!

with the new friction coefficientb5g/v0, and external
driver f (t)5e1 cos(w1t) with amplitude e15E1 /mav0

2

5aE1/2p2Vs , and frequencyw15v1 /v0. The scaled po-
tential V(x,y) is given by

V~x,y!5
1

4p2 H S Vm

2Vs
11D2

Vm

2Vs
@cos~2px!1cos~2py!#

1S Vm

2Vs
21D cos~2px!cos~2py!J . ~6!

Note that in the scaled potential the barrier for transp
along thex or y directions,V(0,61/2) or V(61/2,0), is
always 1/2p2, independent of the parameterVm /Vs . This
parameter will modulate the barrier for transport along
diagonal direction,V(61/2,61/2)5Vm /Vs2p2, and the
strength of the potential coupling. The valueVm /Vs52
gives a separable potential with a cosine shape in each d
tion. The parametersb andVm /Vs in the scaled equations ar
usually dictated by the particular physical system un
study, therefore they will be fixed. We will takeb50.07 and
Vm /Vs55/4 throughout the paper. This particular value
the friction coefficient and maxima to saddle-point ratio h
been shown to accurately fit experimental results for s
diffusion of Na atoms on a Cu~001! surface@28#, using clas-
sical Langevin simulations. We set the scaled frequencyw1
to be of the order of unity. Forw1!1, or equivalentlyv1
!v0, the periodic driver acts adiabatically and its effect
the same to that of a uniform field, while forw1@1 the
particle is almost unperturbed since its motion is mu
slower than the driver variation along a period, which h
zero mean value. We choose the valuew150.75 hereafter.

A common feature of deterministic dissipative and forc
periodic systems is the occurrence of broken symmetry, m
tistability, chaotic behavior, and hysteresis@36#. All these
features are present in the one-dimensional case. We rem
however, that for~1D! overdamped systems, where theẍ
dependent term is neglected, chaotic behavior is not poss
@34#. A much richer phenomenology regarding the determ
istic dynamics is thus present in the underdamped case
study here. In particular, chaotic and hysteretic phenom
are closely related to the existence of current revers
@24,25#.
2-2
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CHAOTIC TRANSPORT OF PARTICLES IN TWO- . . . PHYSICAL REVIEW E 67, 046212 ~2003!
The second driver is used mainly as a perturbation, th
fore we will describe first the deterministic dynamics fore2
50. Although a net current of particles is absent in this c
due to symmetry, the dynamics presents a large variet
behavior, which is important to analyze for later consid
ations. Moreover, the main differences with the on
dimensional case and the influence of the potential ene
coupling are discussed.

II. DYNAMICS UNDER SYMMETRIC DRIVING

In the absence of forcing (e150), trajectories always end
up in one of the potential minima because of continuo
energy dissipation. When a periodic driving is switched
particles can gain energy and compensate the energy d
pated. If the net change in energy per forcing period is ze
then the trajectory will describe a periodic motion~limit
cycle or periodic attractor!. In one dimension, this is given
by the condition

E
0

T1
ẋe1 cos~w1t !dt5bE

0

T1
ẋ2dt. ~7!

Integrating by parts the left-hand side we obtain

e1@x~T1!2x~0!#5bv̄~E!, ~8!

where v̄(E)5*21/2
1/2 A2@E2V(x)#dx is the average velocity

in one spatial period for a particle with energyE. The limit
cycles can be locked or oscillating trajectories if they do
have enough energy to surmount the potential barrier@in this
case,x(T1)5x(0) and v̄(E)50 in Eq. ~8! above#, or run-
ning trajectories if they diffuse freely along one directio
with positive or negative velocity. Therefore, for weak for
ing only small oscillations around the well bottom occur.
order to get running trajectories,E should at least equal th
potential energy barrier in Eq.~8!. This gives the driver am-
plitude e152b/p2;0.015 in the scaled case.

To obtain a significant picture of the dynamics for a bro
range of driver amplitudes, we have plotted bifurcation d
grams in one of the dynamical variables, here the velo
componentvx . That is, we run an ensemble of trajectori
with fixed velocities andy coordinate, and values of thex
coordinate along one spatial period. Then we plot thevx
variable of each trajectory whenevert5T1 ~stroboscopic
Poincare´ map!. This is a proper choice, since periodic attra
tors are due to synchronization with the driver frequencyw1.
Note, that in two dimensions this may not render too mu
dynamical information, since thevy component remains un
known. We find, however, that this is mostly determined
the direction of the periodic forcing, i.e., the value of t
parameterm in Eq. ~5!. Here, and in order to clarify the rol
of the potential energy coupling in the transport properti
we have studied periodic forcing applied mainly along thx
direction (m51022), and forcing along the diagonal (m
51).

In Fig. 1 we show the bifurcation diagram for the case
m51022, with e1<0.62. It turns out that it is qualitatively
very similar to the 1D case~not shown here!, the main dis-
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tinctive features will be remarked below. At low values
forcing, only small oscillations alongx are seen. Fore1
.0.015, as predicted by the simple arguments above, a
ond stable attractor appears, which at the beginning is q
siperiodic and latter becomes periodic. This, however,does
not correspond to running solutions, but to rotating trajec
ries ~see Fig. 2!, which can exceed in amplitude one spat
period as allowed by energy considerations. This makes
other important difference with the case of constant forc
~tilted washboard potential! where running solutions alway
set in above the critical forcing 2b/p2 @1#. After the attractor
with small oscillations becomes unstable fore1.0.053, tra-
jectories which aretransiently chaotic and running appea
but they eventually converge to the rotating solution. At
creasing values ofe1, these chaotic transients can last f
very long times, more than 1000 forcing periods. Persist
running solutions appear in our case fore1.0.107 and they
are associated with chaotic trajectories, i.e., to a reg
where frequency locking is absent. This is due to destab
zation of a period 3 attractor, which is a common route
chaos in dissipative systems@34#. The first value of the
driver amplitude where onlyperiodic running solutions exist
is e1>0.15 @Fig. 1~b!#. Note that in the adiabatic limitw1
!1, the effective potential for transport along thex direction
Ve f f(x,0)5V(x,0)6xe1 has no minima for e1>1/2p
;0.16 both for positive and negativee1, therefore one ex-
pects purely running solutions close to this value. Howev
the two running orbits with opposite velocities are equa
probable and the net flux is zero. It is important to rema
that considering only the adiabatic linear response, a dire
current is ruled out by symmetry even whene2Þ0. One has
to go to third order in the response to get a directed curr
~as a consequence of harmonic mixing! with an asymmetric
biharmonic driver@33,37#.

As seen from Figs. 1~b!–1~d!, chaotic regions alternate
with periodic ones. The periodic windows correspond
closed rotating orbits, or to running trajectories, with t
possibility of coexistence of both attractors~hysteresis!, see
for instance the region 0.17,e1,0.18 where a period 3
closed orbit coexists with a period 2 running solution. Th
scheme of chaotic regions with alternating periodic windo
of running and rotating orbits is repeated until very hi
values of the forcing amplitude. With increasing amplitud
periodic running trajectories tend to be more stable than
tating ones. Here we limit ourselves to analyze the inter
e1,0.22, which for some systems is at the edge of the
perimental capabilities. For instance, for the parameters
the Cu~001! surface used above, wherea52.57 Å, and the
barrier for diffusion alongx is Vs575 meV, scaled ampli-
tudes of;0.2 correspond to currents of;109 V m21 that
can be achieved in force ion microscopy~FIM! or scanning
tunneling microscopy~STM! measurements@21,38#. Note
also that we cover mainly the strong field regimeaE1@Vs
sinceaE1 /Vs51 for a scaled amplitudee1;0.05

The most prominent distinctive features of the 2D pro
lem as compared with the one-dimensional case, form
51022, is the existence of rotational motions due to t
addition of the second dimension, which, however, have th
counterparts in oscillating orbits of high amplitudes in t
2-3
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FIG. 1. Bifurcation diagram for the equations of motion~5! with forcing along thex direction (m51022). The ~dimensionless! vx

variable is plotted at multiples of the forcing periodT1, after a transient time of 400T1. In panel~a! the region 0.6<e1<0.11 is also plotted
in small red circles after a transient time of 2000T1.
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1D problem, and the larger destabilization of rotating m
tions due to the potential energy coupling. For instance, p
sistent running trajectories appear at higher valuese1
;0.114) of the forcing amplitude compared with the 2
case. We remark that rotational flows embodying several s
tial periods have been predicted in 2D periodic potent
@10#, but they are generated by a completely different mec
nism, namely, by the addition of colored noise, and rotatio
are there independent of the initial conditions.

If the driver is applied along the diagonal direction,m
51, a very different dynamical situation takes place~see
Fig. 3!. The regular intervals of frequency locking are des
bilized, and chaos dominates for moderate values of the f
ing amplitude~in this case corresponding to running traje
tories propagating along the diagonal!. At low values of
forcing, a period 2 rotating orbit~distorted along the diago
nal! appears above the energetically allowed value to s
mount the barrier, which is stable untile1;0.107, where it
suffers a period doubling cascade to chaos. Transiently
otic behavior is also observed here for lower values of d
ing amplitude, but for smaller number of forcing perio
compared to them51022 case. A possible reason for th
absence of appreciable intervals of stability of periodic ru
ning solutions along the diagonal direction~compare to Fig.
1! can be found if we analyze the Hamiltonian dynam
(b→0 limit! without forcing. There one can find the princ
pal periodic orbits for the potential@39# and study its stabil-
ity as a function of the total energy. For the nonsepara
04621
-
r-

a-
s
a-
s

-
c-

r-

a-
-

-

le

potential ~3! the main periodic motions consist of transl
tions along parallel and diagonal directions, see Fig. 4, wh
are running for energies above the potential barriers, as
as rotating orbits localized in one unit cell in analogy to t
forced dissipative case. It turns out that translations along
diagonal direction are very unstable, while those along
parallel directions are much more stable. This instability p
sists in the forced case.

In the chaotic intervals, dynamical randomness can mim
the behavior of a stochastic system, and transport prope
like diffusion can be defined and studied in an analogo
way @40#. Statistical quantities of interest are the me
square displacements, from which effective diffusion coe
cients along specific directions can be obtained from the g
eralized Einstein’s relation

^ux~ t !2x~0!u2&52De f ft
11a, t→` ~9!

as well as velocity power spectra,

S~v!5E
2`

`

^ ẋ~ t !ẋ~0!&e2 ivtdt, ~10!

and jump distributions. The valuea50 in Eq. ~9! corre-
sponds to the normal diffusive case, analogous to the Bro
ian motion, while the caseaÞ0 implies anomalous trans
port, superdiffusive (a.0) or subdiffusive (a,0) @41#.
Anomalous ~superdiffusive! transport in periodic two-
2-4
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CHAOTIC TRANSPORT OF PARTICLES IN TWO- . . . PHYSICAL REVIEW E 67, 046212 ~2003!
dimensional Hamiltonian systems@39,42,43#, as well as in
circle map models of Josephson junctions@44#, has been
studied previously. In Hamiltonian ratchets, it has be
shown that the current rectification is obtained by desymm
trization of Lévy flights @32,45#, which also induce superdif-
fusion. In a 1D underdamped ratchet system, Mateos@24#
observed a superdiffusive growth of the mean square
placement close to a bifurcation point. Here we study

FIG. 2. Some representative attractors appearing at different
ues of the driver amplitudee1 ~see previous figure!. ~a! Quasiperi-
odic attractor ate150.027. ~b! Coexisting periodic attractor ate1

50.027. ~c! Rotating periodic attractor ate150.04. ~d! Period 3
rotating attractor ate150.1. ~e! Portion of a running chaotic trajec
tory at e150.13. ~f! Running period 1 attractor ate150.16. In
panels~a!–~c! the maxima of the potential hills delimiting one un
cell are marked with diamonds. In~e!–~f! the time is in units of the
stroboscopic period.
04621
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detail the diffusive transportdeepinto a chaotic interval, and
show that anomalous behavior indeed occurs in this kind
systems at sufficiently long times, under proper forcing a
plitudes. This, however, is not related to the occurrence
not of a directed current, both are independent phenom
We note that the mean square displacement and the velo
autocorrelation function are related at long times by@46#

^ux~ t !2x~0!u2&;2tE
0

t

^ẋ~0!ẋ~t!&dt. ~11!

By Laplace transforming both sides, one sees that a beha
of the mean square displacement as in Eq.~9! induces a
decay of the velocity power spectrum at small frequencies
v2a for a>0. Therefore, an anomalous~superdiffusive! be-
havior implies an algebraic decay of the velocity power sp
trum at small frequencies.

For m51022 and e250, we focus on the broad chaoti
regions shown in Fig. 1~b!, 0.12,e1,0.15 and 0.18,e1
,0.21. For values of the forcing amplitudee1 deep inside a

l-

FIG. 4. Main periodic orbits of the Hamiltonian problem wit
g50 ande15e250, at a scaled energy of;0.058. This energy is
between the barrier for transport along the parallelx or y directions,
Vs , and that for transport along the diagonal directions,Vm . The
equipotential in one unit cell is plotted to guide the eye. Dash
lines indicate unstable periodic orbits and solid lines indicate sta
orbits. For energies above the maximaVm , the parallel orbit along
x becomes stable, while the diagonal orbit is still highly unstabl
FIG. 3. Bifurcation diagrams form51 ~transport along the diagonal direction!. The transient time is set equal to 1000T1.
2-5
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R. GUANTES AND S. MIRET-ARTÉS PHYSICAL REVIEW E67, 046212 ~2003!
chaotic region, we have observed only a normal diffus
behavior. As an example, we show the velocity power sp
trum for e150.13 in Fig. 5 ~solid line!. It converges to a
constant value at small frequencies, and the Einstein d
sion coefficient is well defined~the mean square displace
ment is proportional tot as shown in the inset!. The finite
frequency part of the spectrum consists of three main pe
at the driver frequencyw1 and two of its harmonics 2w1 and
3w1 ~frequencies in Fig. 5 are scaled byw1). The sharpest
ones correspond tow1 and 3w1. To understand this, we not
thate150.13 lies between a stable period one running attr
tor at e1;0.15 and a stable period three rotating attracto
e1;0.124 @small periodicity window in Fig. 1~b!#. Chaotic
trajectories in between are made of running pieces in ei
direction randomly interrupted by small periods of localiz
tion, due to the alternative switching between both attract
The periodic parts give an oscillating contribution to the v
locity autocorrelation function, and therefore a series od
peaks at the fundamental frequencies and its harmonics@47#.
The situation can change drastically if the forcing is appl
along the diagonal directions. In fact, for the same amplitu
e150.13, after a very long transient time chaotic trajector
converge to a period 2 attractor. This is illustrated again
Fig. 5 ~dashed lines!. The mean square displacement beha
as t2 at long times~inset! and the power spectrum decays
v21 at small frequencies. We remark that this ballistic b
havior is trivial, since all trajectories are periodic and the
fore correlated at long times, and should not be confu
with ballistic behavior under persistent chaos conditions@44#
as we shall show later.

III. ASYMMETRIC BIHARMONIC DRIVING

Here we consider the effect of a biharmonic driving@n
52 andf50 in Eq. ~4!# on the dynamics and on the tran
port and diffusive properties of the periodic system. As sta

FIG. 5. Velocity power spectrum is ate150.13, e250. Solid
line, m51022. Dashed line,m51. The corresponding mean squa
displacements are shown in the inset. Frequencies are scaled b
driver frequencyw1.
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above, the most salient feature with respect to the harmo
case is the breaking of the temporal symmetryF(t)52F(t
1T1/2), thus allowing in principle a net flux of particle
along a specific direction for large enough forcing amp
tudes. Opposite to the~1D! overdamped case, where a n
current is always present after the critical forcing amplitu
is reached@with exception of systems with subtle symmetri
@30#, ~b!# here the averaged particle current

^v&[ lim
t→`

^x~ t !2x~0!&
t

5 lim
n→`

^x~nT1!2x~0!&
nT1

~12!

can be zero depending on the particular driving amplitud
A net current for 1D ratchet systems is expected when lo
ing between the driver period and the time required for
particle to cross one unit cell is attained, therefore givi
running periodic solutions. Taking as a unit of time the driv
periodT1, a running solution of periodm in the stroboscopic
surface of section will contribute to the flux as61/m, de-
pending on the sign of its velocity, according to Eq.~12!.
Previous studies of deterministic underdamped ratch
where the asymmetry was directly in the potential ene
function, shown that regular frequency-locked regions
ways gave rise to a net flux when running solutions w
present@25#. Here we show that a net flux can be also o
serveddeep in the chaotic~nonlocked! regions, if they are
confined between two running periodic attractors. Moreov
the transport properties inside the chaotic regions are
changed by the addition of the second harmonic driver.

In Fig. 6 we plot the bifurcation diagrams for the range
e1 corresponding to Fig. 1~b!, and different values of the
biharmonic driver amplitudee2, from 0.03~top left! to 0.1
~bottom right! in steps of 0.02. The flux along thex direction
is also shown in the upper panels. The desymmetrization
the two period 1 running attractors for 0.15,e1,0.18 is
seen very clearly. Moreover, for a wide range of values of
parametere1 we have an hysteresis loop due to the coex
ence of running trajectories in both directions. This induc
also a current reversal~from positive to negative net curren
as we increasee1), which gradually becomes more steep
desymmetrization is more effective and the hysteresis l
gets narrower. At low biharmonic amplitudes, other sma
current reversals are also seen separated by chaotic re
~between 0.18,e1,0.22), corresponding to the narrow p
riodicity windows inside the chaotic attractors. Therefore,
have two different mechanisms for current reversals: thro
hysteresis due to different desymmetrization of two runn
attractors in opposite directions, and through chaotic~no fre-
quency locked! regions between two small locked interval

With increasing amplitudee2, chaos disappears due t
stabilization of the running period 1 attractor, and cha
mediated current reversals seen in Fig. 6~a! also disappear
giving rise to overall negative flux. It has been recently no
that a weaksubharmonicsignal could aid to stabilize a di
rected current in periodically forced ratchets@26#. This is
also the case for biharmonic drivers. Which frequency
more effective in stabilizing chaos may depend on the p
ticular system and amplitude range.

the
2-6
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FIG. 6. Bifurcation diagrams andx component of the total flux form51022 and ~a! e250.03; ~b! e250.05; ~c! e250.07; ~d! e2

50.1. The range ine1 corresponds to that in Fig. 1~b! in all four panels. The flux in they direction is zero. Grid lines have been plotted
semi-integer values of the flux.
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The diffusivelike dynamics deep inside a chaotic inter
is also modified by the addition of the harmonic driver.
persistent chaotic regions we found previously (e250 case!
only normal diffusive behavior with the mean square d
placement growing ast. The situation changes whene2Þ0.
As an example, let us examine the casem51022, e150.13
analyzed above~see Fig. 5!. In Fig. 7 we show the corre
sponding power spectra and mean square displacement
two moderate values of the harmonic amplitude:e250.045
and e250.055. An anomalous superdiffusive behavior w
exponenta;0.75 is seen in both statistical quantities ate2
50.045. The exponent becomesa;1 ~the 1/f noise case!
by increasing the value ofe2 ~0.055!. We remark that in spite
of the anomalous diffusive behavior of the chaotic dynam
the average total flux remains equal to zero. This can
understood if we realize that chaotic trajectories here sw
between confined rotating solutions and running ones.
running portions of the chaotic trajectories become lon
due to destabilization of the confined solutions~therefore the
anomalous growing of the mean square displacement!, but
both directions are equally probable. A different situati
takes place if the chaotic region lies between two runn
attractors, as is the case for the 0.18,e1,0.21 interval in
Fig. 6. Here we have detected also 1/f -noise behavior, due to
intermittency@34,48#, but now we have long portions of th
trajectory running backwards interrupted by random and
frequent bursts where it moves forward for a short tim
Now, due to desymmetrization of the backward attractor,
04621
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net flux is also negative in the chaotic region.
Finally, let us see the situation when the ac driver is a

plied along the diagonal direction~Fig. 8!. Here they com-
ponent of the flux is equal to thex component. One can
appreciate that chaos is still more dominant, but a net flux

FIG. 7. Velocity power spectra and mean square displacem
~inset! for m51022, e150.13. Solid line,e250.045. Dashed line,
e250.055. We have also plotted a long time portion of an interm
tent chaotic trajectory ate250.045 to show the switching betwee
running and localized behavior.
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R. GUANTES AND S. MIRET-ARTÉS PHYSICAL REVIEW E67, 046212 ~2003!
FIG. 8. Same as Fig. 6 for transport along the diagonal direction (m51).
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chaotic region shows again in between running attract
and stabilization also takes place.

IV. EFFECT OF NOISE

In many experimental situations a source of noise, du
a finite temperature, is unavoidable. For the particular sys
and model we are studying here, namely, diffusion of
atoms on a Cu~001! surface, it has been shown that a Gau
ian white noise term properly takes into account the temp
ture effects on single diffusing adatoms@28,49#. This is jus-
tified whenever the vibrational frequencies of the adato
are lower than the Debye frequency of the substrate. Th
fore, we add a noise termj(t) to the scaled equations o
motion ~5!, with correlation

^j~ t !j~ t8!&52bk̂ u d~ t2t8!. ~13!

The scaled temperature isk̂ u5kT/2p2Vs . We keep the tem-
perature low, so thatkT/Vs!1. The addition of weak noise
to a nonlinear dynamical system can modify considerably
local stability properties, but global stability may be rel
tively conserved@50#. In systems far from equilibrium, it can
influence the transport properties and induce transitions
tween different stable steady states@51#. Since we focused
mainly on the strong field regimeE1@Vs , or e1@1/2p2, a
weak noise is going to act as a perturbation and it will all
the trajectories to explore larger areas of phase space.

By inspection of the bifurcation diagrams, we found th
the structure shown in Figs. 1 and 6 is conserved for te
04621
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a
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peraturesk̂ u<1024, which corresponds to just a few kelvi
for the parameters of the Na-Cu~001! system. Going to
higher temperatures, as the ones employed for instanc
experimental measurements of atomic diffusion by Heliu
beam scattering techniques@28,49# ~50–300 K! one sees tha
the regular windows observed in Figs. 1 and 6 are blurr
and trajectories can explore the whole phase space due
frequent escape from the attractors basins. This does
mean, however, that the deterministic dynamics has no in
ence on the transport properties. Sticking to the attractor
sin of regular running orbits is still important at higher tem
peratures. This can be appreciated in Fig. 9~b!, where k̂ u
5331023 (T;50 K). A current reversal is seen to tak
place ate1;0.16, which was the value for the determinist
current reversal due to the hysteretic loop between the
running attractors~compare to Fig. 6!. It is important to re-
mark that the mechanism for the observed current revers
only of deterministic nature. In overdamped systems at l
forcing amplitudes, the interplay between frequency s
chronization and noise can also induce current rever
@52,53#.

It is also of interest to study the diffusion properties in t
noisy case. Obtaining the effective diffusion coefficient
defined by Eq.~9!, we see a normal diffusive behavior unt
the transition valuee1;0.16, and anomalous diffusion o
increasing exponenta with larger forcing amplitudes. This
signals again the sticking of stochastic trajectories around
running solutions. For ever spreading trajectories, one
define also anormal diffusion coefficientDnor through the
second cumulant
2-8
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CHAOTIC TRANSPORT OF PARTICLES IN TWO- . . . PHYSICAL REVIEW E 67, 046212 ~2003!
lim
t→`

^x2~ t !&2^x~ t !&252Dnort, ~14!

which always gives a finite value forDnor . This is plotted in
Fig. 9~a!, scaled by the Einstein diffusion coefficientD0

5 k̂ u/b ~free diffusion! at the same parameter values th
the flux, e250.1 andT;50 K ~note that at small forcing
e1!0.1 the ac field acts like asubharmonicdrive!. The onset
for DnorÞ0 is close to the first threshold valu
e152b/p2, and it reaches a plateau value close to the f
diffusion coefficientD0, until the current reversal takes plac
at the second threshold value,e151/2p, where it can be
considerably larger thanD0. A similar enhancement of free
diffusion close to the threshold value for deterministic ru
ning solutions was found in overdamped systems@54#.

Applying the field along the diagonal direction (m51)
gives a different situation for the flux, Fig. 10. Here th
current reversal takes place ate1;0.09, which is far away
from the adiabatic threshold value for deterministic runn
solutions along the diagonal,e1;0.23. The reason is that th
second frequency component of the drive induces stabil
tion of periodic running attractors which should be otherw
chaotic, see Fig. 3.

V. CONCLUSIONS

In the present work we have investigated in detail
deterministic dynamics of particles in two-dimensional pe
odic structures, under the action of frictional and tim
periodic forces. Such models are of interest for particle se
ration in experimental devices@12,18,19# or transport of
vortices in superconductors@13#, as well as for surface
smoothening@20,21# and selective control of self-diffusion
on metallic surfaces@22#. Specific parameters have bee
given to correspond to a semiempirical potential for diffusi

FIG. 9. ~a! Normal diffusion coefficient, Eq.~14!, along thex

direction fork̂ u;331023 ande250.1, as a function of the scale
field amplitudee1 (m51022). ~b! Parallel component of the flux
for the same parameter values.
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of Na atoms on a symmetric Cu~001! surface@28#, assisted
by ac electric fields.

The two main questions addressed in our study have b
the influence of the potential energy coupling on the tra
port and diffusive dynamics, and the effects induced by
dition of a second harmonic field in the transport properti
We have seen that the coupling plays an important role w
the time-periodic field is applied along the diagonal, main
destabilizing running periodic motions, and we have give
qualitative explanation for that in terms of the periodic orb
of the Hamiltonian~force and friction free! case. Under a
proper time asymmetric biharmonic driver, coexisting ru
ning attractors in opposite directions are desymmetrized,
ing rise to directed current and current reversals. A net fl
of particles is observed both in the periodic intervals of t
field amplitude~frequency locking intervals! as well as in
chaotic intervals lying between two running attractors. O
increasing the second harmonic amplitude, we observe ch
suppression due to stabilization of a running attractor, a
therefore an increase of the interval for which frequen
locking is present. The only current reversal that eventua
survives is the one produced by an hysteretic loop betw
two running attractors with opposite velocities. The bih
monic field is also able to induce a drastic cange in the tra
port properties deep in a chaotic interval, by turning the d
fusive motion from normal to anomalous~superdiffusive!
and eventually to ballistic (1/f noise! due to intermittency.

Upon the consideration of temperature effects throug
Gaussian white noise term, we conclude that features of
deterministic dynamics show up until temperature values
side the experimental capabilities for our specific system
particular, a current reversal of flux appears close to
threshold value for the onset of pure running solutions. D
fusion is also enhanced with respect to free diffusion arou
this threshold. The added dimension and the potential en

FIG. 10. ~a! Normal diffusion coefficient, Eq.~14!, alongx for
the same parameter values are as in Fig. 9 with the electric
applied in the diagonal direction (m51). ~b! Parallel component of
the flux.
2-9
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coupling play an important role in the noisy case too, sin
the current reversal appears much earlier when the fiel
applied along the diagonal direction. These results sug
that an active control of self-diffusion on low-viscosity su
faces is possible by using biharmonic electric fields alo
specific directions, changing only the amplitude of the fi
harmonic. New interesting rectification phenomena may
cur when two drives are applied alongdifferentdirections, as
it has been recently shown@13#.
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