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Chaotic transport of particles in two-dimensional periodic potentials driven by ac forces
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The diffusive and directed transport of particles in a two-dimensional periodic potential subjected to fric-
tional and time-periodic forces is analyzed in detail. The model represents diffusion of atoms adsorbed on
metal surfaces under an appliad electric field(surface electromigratigrin the low-temperature limit. The
second dimension and the potential energy coupling are shown to play an important role on both diffusion and
net currents, depending on the direction of the drive. A properly chosen biharmonic field is able to control the
directed ratchetlike dynamics of atoms symmetricsurfaces, since current reversals take place by different
stabilization of attractors. Reversals identified with hysteresis loops between periodic running attractors are
robust against an increase of the second harmonic amplitude, and against temperature effects inside the
experimental range for measurements of surface diffusion.
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I. INTRODUCTION potential will be particularized to the case of atomic diffu-
sion on metal surfaces under the effect of an ac electric field,

The problem of transport in periodic potentials concernsa phenomenon known asirface electromigratiohi20—22.
different fields in physics, chemistry, and biolopl]. Some  The separability vs nonseparability of this potential will be
of the most significant examples include motion of ions inalso discussed, stressing the main qualitative differences, as
Superionic COﬂdUCtOf&], Current-vo|tage characteristics in well as the differences with the one-dimensional case. As a
Josephson junctionid] or diffusion of atoms adsorbed on Model we take a potential spatiabymmetridn both dimen-
metal surface4]. When noise plays a role on such systemssions. Therefore, the existence of a net particle current will
but the noise intensitghamely, the scaled temperat®) is  be eventually due to théemporal asymmetrpf the time
much smaller than the barrier height for transport, the conperiodic driving. The onset of a stationary flux as we vary a
ceptual link between these seemingly distinct phenomenBarameter of the systefthe driver amplitudgcan be then
can be traced back to Kramers’ famous theory of activatedvell investigated. Although the denominaticatchetis usu-
escape over a potential barrigi—7], particularized to peri- ally reserved for those systems with spatial asymmggiy
odic potentials. Recently, there has been a renewed interelite dynamics exhibited under temporal asymmetry is very
in this issue due to the recognition that biological moleculassimilar to that found in underdamped ratchet syst¢2s-
motors are able to produce directional motion of Cargo§6]-
along periodic structuref8]. Many different models have ~ The main purpose of the present paper is a detailed char-
been proposed in order to understand their basic physicﬁcterization of both thﬁansport and diffusiveleterministic
mechanism of operatioff]. The two necessary ingredients dynamics of atoms on a low-viscosity metal surface, under
are breaking of detailed ba|an(ﬂ'|e system is driven away additional ac forces of weak and strong amplitudes. The dif-
from thermal equilibrium due to deterministic or stochasticferent mechanisms giving rise to directed current will be also
perturbationsand breaking of spatiotemporal symmetry. Theanalyzed, as well as the existence of multiplerent rever-
archetypal model reduces to the motion of a particle in gsalswhich are a common phenomenon in inertial or under-
space periodic potential in the presence of friction, stochasti€amped ratchetf23-25. Previous studies of surface elec-
and/or deterministic forces. Out of the many different possiiromigration have been restricted to 1D, and have focused on
bilities to induce directed transport, we will focus on a de-the spatial asymmetry induced in the periodic potential by
terministic time-periodic driving, neglecting in a first ap- the Schwoebel barrier at the stef20,21 or on the jump
proach thermal or stochastic forces, but considering frictiorflistributions under weak periodic modulatiof22]. Deter-
and inertial terms. The effect of adding a Gaussian whiteéninistic diffusive transport in a 1D ratchet potential in the
noise of weak intensity will be studied at the end. adiabaticregime has been also studied recefgly].

Most of the theoretical models used so far to study trans- The classical dynamics of a particle moving on a two-
port in periodic potentials under nonequilibrium perturba-dimensional potential of mean force, with a time periodic
tions have been one dimensional, with a few exceptiads-  driving F(t) of zero average, neglecting thermal effects and
15]. Here we will analyze in detail the classical dynamics ininteractions with another particles, is described by the couple
two dimensions, sayx(y), with the adiabatic potential being Of equations
periodic along both directions. Despite the widespread appli-

cability of the model(think of vortex and fluxon motion in . IV(X,y) .
superconductorgl3,16,17 or separation of macromolecules MmxX==—"" 7X+F(t),
in 2D deviceq18,19) specific details and parameters of the
IV (X,y) .
=—————gy+uF 1
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wherem is the mass of the particle, the dissipation is sup-between the period of the particle inside the potential well
posed to be due to the existence of an Ohmic friction termand the period of the external drivéy [35]. Therefore, it is
with friction coefficient y=7/m, and u<1 is a constant convenient to rescale the equations of motithto dimen-
taking into account the projection of the driving force alongsionless unit$24,25 dividing distances by the spatial period
thex andy directions. The potentiaf (x,y) representing the a and times by the period of vibration of the particle close to
adiabatic interaction between an adatom and a periodic sulthe bottom of the potential wellTo=27/wg, with wq
strate symmetric in both directions is taken to be of the form=27V/2ma?.

[28,29 Then in rescaled units equatioff§ read
V(x,y)=Vy—V [ cog2mx/a)+cog2my/a)] . V(X,y) .
X=— —bx—1f(t),
+V,coq2mx/a)cog 2myla), 2 IX
whereV,, V4, andV, are constants aralis the period along . IV(XY) by f
the x andy directions. By imposing that the potential is zero y=- ay y— pf(b), ®)

at the minima, i.e.V(0,0)=0, and takingV(0,+a/2)=V

andV(*xa/2,xal2)=V,,, whereVg andV, are the energies with the new friction coefficiento=y/w, and external
of the saddle points and maxima, respectivédgrriers for  driver f(t)=e; cosfvt) with amplitude e;=E;/maw}
transport along the parallel directions or the diagonal direc=aE,/27?V,, and frequencyw;=w;/w,. The scaled po-

tions respectively one obtains the expression tential V(x,y) is given by
Vin, Vs Vi 1 ((V Vv
V(X,y)=—+ —=— —[coq2wx/a)+cog2myl/a)] _ m __'m
4 2 4 V(X,y) 22 2V5+1 2Vs[cos(27TX)+005{2wy)]
+ Vi _ Vs cog 2mwx/a)cog 2myl/a) ®) Vi
4 2 ' + W_l cog2mx)cog2my) ;. (6)
S

The periodic driving is of the form Note that in the scaled potential the barrier for transport

F(t)=E;coq o)+ E,codnwit+ ), (4) along thex or y directions, V(0,=1/2) or V(£1/2,0), _is
always 1/2r?, independent of the paramet@,/Vs. This
with E,<E, andn an integer or semi-integer numbgrar-  Parameter will modulate the barrier for transport along the
monic or subharmonic frequencyFor E,=0 the equations diagonal direction,V(+1/2,=1/2)=V,/V27% and the
of motion (1) are unable to produce a net flux of particles instrength of the potential coupling. The valig,/Vs=2
either direction. This is due to symmetry consideratig@j:  Jives a separable potential with a cosine shape in each direc-
because equatiord) are invariant with respect to the sym- tion. The parametetsandV,/V in the scaled equations are
metry transformations x(y)—(—x,—y) and t—t+T,/2 usually dictated by the particular physical system under
(le 277/(‘)1) which Change the Sign of the velocities, run- Study, therefore they will be fixed. We will take=0.07 and
ning solutions of Eq(1) with positive and negative veloci- Vm/Vs=5/4 throughout the paper. This particular value of
ties a|ongx oryare equa”y probab|e’ therefore the averagingthe friction coefficient and maxima to Saddle-pOint ratio has
over possible realizations gives a zero total flux. In order td?€en shown to accurately fit experimental results for self-
break the temporal symmetry, we negi=0 andn aneven diffusion of Na atoms on a GQ01) surface{28], using clas-
integer number, or a semi-integer. Here we will take a biharsical Langevin simulations. We set the scaled frequemgy
monic driver,n=2. Note that in the underdamped limjt ~ to be of the order of unity. Fow;<1, or equivalentlyw,
-0 (Ham"tonian Cash the symmetry transformatioh— <wo, the periOdiC driver acts adiabatically and its effect is
—t+t, also changes the sign of the velocity while leavingthe same to that of a uniform field, while fav;>1 the
the equations of motion invariant for a symmetric driving Particle is almost unperturbed since its motion is much
F(—t+to)=F(t), therefore the conditioB,#0, ¢+ 0,7 is slower than the driver variation along a period, which has
needed to produce a directed current. Moreover, in HamilZ€ro mean value. We choose the valg=0.75 hereafter.
tonian systems it has been recenﬂy shown that a mixed phase A common feature of deterministic dissipative and forced
space is necessary in order to observe directed currenpgriodic systems is the occurrence of broken symmetry, mul-
[31,32. It is also worth noting that nonlinear nonadiabatic tistability, chaotic behavior, and hystere$B6]. All these
response to ac fields can be important to explain some rectfeatures are present in the one-dimensional case. We remark,
fication mechanismg33]. however, that for(1D) overdamped systems, where tke
Even in one dimension, the consideration of the inertialdependent term is neglected, chaotic behavior is not possible
term and the time periodic force makes the dynamical systerf84]. A much richer phenomenology regarding the determin-
nonintegrablg 34] giving rise to chaos for certain values of istic dynamics is thus present in the underdamped case we
the amplitudeE,; and the driving frequencw;. The exis- study here. In particular, chaotic and hysteretic phenomena
tence of periodic or chaotic attractors for a given set of initialare closely related to the existence of current reversals
conditions is related to the presence or not of mode locking24,25.
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The second driver is used mainly as a perturbation, thereinctive features will be remarked below. At low values of
fore we will describe first the deterministic dynamics &r  forcing, only small oscillations along are seen. Foe;
=0. Although a net current of particles is absent in this case>0.015, as predicted by the simple arguments above, a sec-
due to symmetry, the dynamics presents a large variety afnd stable attractor appears, which at the beginning is qua-
behavior, which is important to analyze for later consider-siperiodic and latter becomes periodic. This, howedegs
ations. Moreover, the main differences with the one-notcorrespond to running solutions, but to rotating trajecto-
dimensional case and the influence of the potential energsies (see Fig. 2, which can exceed in amplitude one spatial

coupling are discussed. period as allowed by energy considerations. This makes an-
other important difference with the case of constant forcing
Il. DYNAMICS UNDER SYMMETRIC DRIVING (tited washboard potentigivhere running solutions always

set in above the critical forcingt w2 [1]. After the attractor

In the absence of forcinge(=0), trajectories always end ith small oscillations becomes unstable &e>0.053, tra-
up in one of the potential minima because of continuousectories which areransiently chaotic and running appear,
energy dissipation. When a periodic driving is switched onpt they eventually converge to the rotating solution. At in-
particles can gain energy and compensate the energy disgireasing values oé,, these chaotic transients can last for
pated. If the net change in energy per forcing period is zeroyery jong times, more than 1000 forcing periods. Persistent
then the trajectory will describe a periodic motiglmit running solutions appear in our case &r>0.107 and they
cycle or periodic attractor In one dimension, this is given e associated with chaotic trajectories, i.e., to a region

by the condition where frequency locking is absent. This is due to destabili-
T T zation of a period 3 attractor, which is a common route to
f xe; cogw;t)dt=b f x2dt. (7) chaos in dissipative systeni84]. The first value of the
0 0 driver amplitude where onlgeriodic running solutions exist
_ ) ) is e;=0.15[Fig. 1(b)]. Note that in the adiabatic limitv,
Integrating by parts the left-hand side we obtain <1, the effective potential for transport along thdirection
— Ver1(X,0)=V(x,0)=xe; has no minima fore,=1/27
€i[x(T1) —x(0)]=bv(E), (8 ~0.16 both for positive and negative, therefore one ex-

_ o ) _ pects purely running solutions close to this value. However,
wherev (E)=[~7,,V2[E-V(x)]dx is the average velocity the two running orbits with opposite velocities are equally
in one spatial period for a particle with ener§ly The limit  propable and the net flux is zero. It is important to remark
cycles can be locked or oscillating trajectories if they do noknat considering only the adiabatic linear response, a directed
have enough energy to surmount the potential bafimethis  current is ruled out by symmetry even whes#0. One has
case,x(T1)=x(0) andv(E)=0 in Eqg. (8) abovd, or run-  to go to third order in the response to get a directed current
ning trajectories if they diffuse freely along one direction (as a consequence of harmonic mixingth an asymmetric
with positive or negative velocity. Therefore, for weak forc- biharmonic driveq33,37.
ing only small oscillations around the well bottom occur. In As seen from Figs. (b)-1(d), chaotic regions alternate
order to get running trajectoriek, should at least equal the with periodic ones. The periodic windows correspond to
potential energy barrier in E@8). This gives the driver am- closed rotating orbits, or to running trajectories, with the
plitude e; = 2b/w2~0.015 in the scaled case. possibility of coexistence of both attractdifsysteresiy see

To obtain a significant picture of the dynamics for a broadfor instance the region 0.%7e;<0.18 where a period 3
range of driver amplitudes, we have plotted bifurcation dia<losed orbit coexists with a period 2 running solution. This
grams in one of the dynamical variables, here the velocityscheme of chaotic regions with alternating periodic windows
componentv,. That is, we run an ensemble of trajectoriesof running and rotating orbits is repeated until very high
with fixed velocities andy coordinate, and values of the  values of the forcing amplitude. With increasing amplitudes,
coordinate along one spatial period. Then we plot #he periodic running trajectories tend to be more stable than ro-
variable of each trajectory whenevér T, (stroboscopic tating ones. Here we limit ourselves to analyze the interval
Poincaremap. This is a proper choice, since periodic attrac-e,<0.22, which for some systems is at the edge of the ex-
tors are due to synchronization with the driver frequewgy  perimental capabilities. For instance, for the parameters of
Note, that in two dimensions this may not render too muctthe Cu001) surface used above, wheae=2.57 A, and the
dynamical information, since the, component remains un- barrier for diffusion alongx is Vs=75 meV, scaled ampli-
known. We find, however, that this is mostly determined bytudes of~0.2 correspond to currents ef10° Vm™? that
the direction of the periodic forcing, i.e., the value of the can be achieved in force ion microscofM) or scanning
paramete in Eq. (5). Here, and in order to clarify the role tunneling microscopy(STM) measurement$21,38. Note
of the potential energy coupling in the transport propertiesalso that we cover mainly the strong field regimg;> Vg
we have studied periodic forcing applied mainly along xhe sinceak;/V =1 for a scaled amplitude; ~0.05
direction (u=102), and forcing along the diagonalu( The most prominent distinctive features of the 2D prob-
=1). lem as compared with the one-dimensional case, gdor

In Fig. 1 we show the bifurcation diagram for the case of=10"2, is the existence of rotational motions due to the
w=10"2, with e;<0.62. It turns out that it is qualitatively addition of the second dimension, which, however, have their
very similar to the 1D caséot shown herg the main dis- counterparts in oscillating orbits of high amplitudes in the
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FIG. 1. Bifurcation diagram for the equations of motitB with forcing along thex direction (=10 2). The (dimensionlessv,
variable is plotted at multiples of the forcing peridg, after a transient time of 400,. In panel(a) the region 0.6<e;=<0.11 is also plotted
in small red circles after a transient time of 2090

1D problem, and the larger destabilization of rotating mo-potential (3) the main periodic motions consist of transla-

tions due to the potential energy coupling. For instance, petions along parallel and diagonal directions, see Fig. 4, which

sistent running trajectories appear at higher valueg ( are running for energies above the potential barriers, as well

~0.114) of the forcing amplitude compared with the 2D as rotating orbits localized in one unit cell in analogy to the

case. We remark that rotational flows embodying several spderced dissipative case. It turns out that translations along the

tial periods have been predicted in 2D periodic potentialgliagonal direction are very unstable, while those along the

[10], but they are generated by a completely different mechaparallel directions are much more stable. This instability per-

nism, namely, by the addition of colored noise, and rotationssists in the forced case.

are there independent of the initial conditions. In the chaotic intervals, dynamical randomness can mimic
If the driver is applied along the diagonal directign, the behavior of a stochastic system, and transport properties

=1, a very different dynamical situation takes plasee like diffusion can be defined and studied in an analogous

Fig. 3. The regular intervals of frequency locking are desta-way [40]. Statistical quantities of interest are the mean

bilized, and chaos dominates for moderate values of the forsquare displacements, from which effective diffusion coeffi-

ing amplitude(in this case corresponding to running trajec- cients along specific directions can be obtained from the gen-

tories propagating along the diagonaht low values of eralized Einstein’s relation

forcing, a period 2 rotating orbitdistorted along the diago-

nal) appears above the energetically allowed value to sur- (IX(1)=x(0)[?)=2Dgst**¢, t—oo (C)]

mount the barrier, which is stable uné}~0.107, where it )

suffers a period doubling cascade to chaos. Transiently ch&S Well as velocity power spectra,

otic behavior is also observed here for lower values of driv-

ing amplitude, but for smaller number of forcing periods S(w):foc <k(t)k(o)>e—iwtdt (10)

compared to theu=102 case. A possible reason for the —o ’

absence of appreciable intervals of stability of periodic run-

ning solutions along the diagonal directiG@ompare to Fig. and jump distributions. The value=0 in Eg. (9) corre-

1) can be found if we analyze the Hamiltonian dynamicssponds to the normal diffusive case, analogous to the Brown-

(b—0 limit) without forcing. There one can find the princi- ian motion, while the case#0 implies anomalous trans-

pal periodic orbits for the potenti§89] and study its stabil- port, superdiffusive ¢>0) or subdiffusive @¢<0) [41].

ity as a function of the total energy. For the nonseparablénomalous (superdiffusive transport in periodic two-
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FIG. 2. Some representative attractors appearing at different va
ues of the driver amplitude; (see previous figuje (a) Quasiperi-
odic attractor at,=0.027. (b) Coexisting periodic attractor &
=0.027. (c) Rotating periodic attractor at;=0.04. (d) Period 3
rotating attractor a¢,=0.1. (e) Portion of a running chaotic trajec-
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FIG. 4. Main periodic orbits of the Hamiltonian problem with
v=0 ande;=e,=0, at a scaled energy 6f0.058. This energy is
between the barrier for transport along the paradlet y directions,

Vs, and that for transport along the diagonal directiovig,. The
equipotential in one unit cell is plotted to guide the eye. Dashed
lines indicate unstable periodic orbits and solid lines indicate stable
orbits. For energies above the maxivig, the parallel orbit along

x becomes stable, while the diagonal orbit is still highly unstable.

410 detail the diffusive transpordeepinto a chaotic interval, and

show that anomalous behavior indeed occurs in this kind of

tory at ;,=0.13. (f) Running period 1 attractor a&;=0.16. In
panels(a)—(c) the maxima of the potential hills delimiting one unit
cell are marked with diamonds. [(8)—(f) the time is in units of the

stroboscopic period.

dimensional Hamiltonian systeni89,42,43, as well as in
circle map models of Josephson junctiddgl], has been

pystems at sufficiently long times, under proper forcing am-

plitudes. This, however, is not related to the occurrence or

not of a directed current, both are independent phenomena.
We note that the mean square displacement and the velocity
autocorrelation function are related at long times[4§]

t . .
(xO-xO~2t [ Oxydr. a1

By Laplace transforming both sides, one sees that a behavior

of the mean square displacement as in Ej. induces a
decay of the velocity power spectrum at small frequencies as

studied previously. In Hamiltonian ratchets, it has beenw™ ® for «=0. Therefore, an anomalogsuperdiffusivég be-
shown that the current rectification is obtained by desymmehavior implies an algebraic decay of the velocity power spec-

trization of Levy flights[32,45, which also induce superdif- trum at small frequencies.
For =10 2 ande,=0, we focus on the broad chaotic

fusion. In a 1D underdamped ratchet system, Maf{e§
observed a superdiffusive growth of the mean square discegions shown in Fig. (b), 0.12<e;<0.15 and 0.18e;
placement close to a bifurcation point. Here we study in<0.21. For values of the forcing amplituég deep inside a

FIG. 3. Bifurcation diagrams for=1 (transport along the diagonal directjofhe transient time is set equal to 1090
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1 above, the most salient feature with respect to the harmonic
g case is the breaking of the temporal symmédiy) = — F(t
+T4/2), thus allowing in principle a net flux of particles
along a specific direction for large enough forcing ampli-
tudes. Opposite to thélD) overdamped case, where a net
current is always present after the critical forcing amplitude
is reachedwith exception of systems with subtle symmetries

~
N

10g<x2(t)>

% | [30], (b)] here the averaged particle current
* , x(t)—x(0 x(nTy)—x(0
=l PO X)L T X0
t—o t n—oo nTl

-2 4
can be zero depending on the particular driving amplitudes.
A net current for 1D ratchet systems is expected when lock-
4 -3 2 -1 0 ing between the driver period and the time required for the
log,,(®) particle to cross one unit cell is attained, therefore giving
) ] ) running periodic solutions. Taking as a unit of time the driver
_ FIG. 5. Velocity power spectrum is @ =0.13, €,=0. Solid harjoqT, 4 running solution of periothin the stroboscopic
line, 4=10"". Dashed linex=1. The corresponding mean square ¢, .o ‘of section will contribute to the flux asl/m, de-
digplacements are shown in the inset. Frequencies are scaled by tﬁgnding on the sign of its velocity, according to E’(d|2).
driver frequencyws. Previous studies of deterministic underdamped ratchets,

i ) .. . Wwhere the asymmetry was directly in the potential energy
chaotic region, we have observed only a normal diffusiveqnction, shown that regular frequency-locked regions al-

behavior. As an example, we show the velocity power specyays gave rise to a net flux when running solutions were
trum for €;=0.13 in Fig. 5(solid line). It converges t0 @ regenf25]. Here we show that a net flux can be also ob-
c_onstant \{a'lue a}t small freguenmes, and the Ems'tem d'ﬁuéerveddeepin the chaotic(nonlocked regions, if they are

sion coefficient is well definedthe mean square displace- qnfined between two running periodic attractors. Moreover,

ment is proportional td as shown in the insgtThe finitt  {he transport properties inside the chaotic regions are also

frequency part of the spectrum consists of three main peaksyanged by the addition of the second harmonic driver.
at the driver frequency; and two of its harmonics\; and In Fig. 6 we plot the bifurcation diagrams for the range of

3w, (frequencies in Fig. 5 are scaled ). The sharpest ¢ corresponding to Fig. (b), and different values of the
ones correspond t,; and 3v;. To understand this, we note iharmonic driver amplitude,, from 0.03 (top leff) to 0.1
thate; =0.13 lies between a stable period one running attraCrpotiom right in steps of 0.02. The flux along thedirection

tor ate;~0.15 and a stable period three rotating attractor afs g1so shown in the upper panels. The desymmetrization of
e;~0.124[small periodicity window in Fig. (b)]. Chaotic  the two period 1 running attractors for 0:48,<0.18 is
trajectories in between are made of running pieces in eithefeen very clearly. Moreover, for a wide range of values of the
Qirection randomly interrupteq by small periods of localiza- parametee, we have an hysteresis loop due to the coexist-
tion, due to the alternative switching between both attractorsance of running trajectories in both directions. This induces
The periodic parts give an oscillating contribution to the ve-5,5q 3 current reversélrom positive to negative net current
locity autocorrelation function, and therefore a serieséof 5 \ye increase,), which gradually becomes more steep as
peaks at the fundamental frequencies and its harmA®ls  jesymmetrization is more effective and the hysteresis loop
The situation can change drastically if the forcing is appliedyets narrower. At low biharmonic amplitudes, other smaller
along the diagonal directions. In fact, for the same amplituderent reversals are also seen separated by chaotic regions
e;=0.13, after a very long transient time chaotic trajectorlgs(between 0.18 €;<0.22), corresponding to the narrow pe-

converge to a period 2 attractor. This is illustrated again injogicity windows inside the chaotic attractors. Therefore, we
Fig. 5(dashed lines The mean square displacement behaves,qye two different mechanisms for current reversals: through

2 . . 3 ) i ) N
as_tl at long times(insey and the power spectrum decays aspysteresis due to different desymmetrization of two running
o~ = at small frequencies. We remark that this ballistic be-gttractors in opposite directions, and through cha@ticfre-

havior is trivial, since all trajectories are periodic and there-, uency lockedl regions between two small locked intervals.
fore correlated at long times, and should not be confused \yjiih increasing amplitudes,, chaos disappears due to

with ballistic behavior under persistent chaos conditioh  iapilization of the running period 1 attractor, and chaos-

as we shall show later. mediated current reversals seen in Fi(g)@lso disappear
giving rise to overall negative flux. It has been recently noted
. ASYMMETRIC BIHARMONIC DRIVING that a weaksubharmonicsignal could aid to stabilize a di-
rected current in periodically forced ratchd@6]. This is
Here we consider the effect of a biharmonic driving  also the case for biharmonic drivers. Which frequency is
=2 and¢=0 in Eqg.(4)] on the dynamics and on the trans- more effective in stabilizing chaos may depend on the par-
port and diffusive properties of the periodic system. As statedicular system and amplitude range.
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0-4 1 a 1 a 1 a
0.12 014 0.16

FIG. 6. Bifurcation diagrams ang component of the total flux fop=10"2 and (a) e,=0.03; (b) e,=0.05; (c) e,=0.07; (d) e,
=0.1. The range ir,; corresponds to that in Fig(l) in all four panels. The flux in thg direction is zero. Grid lines have been plotted at
semi-integer values of the flux.

The diffusivelike dynamics deep inside a chaotic intervalnet flux is also negative in the chaotic region.
is also modified by the addition of the harmonic driver. In  Finally, let us see the situation when the ac driver is ap-
persistent chaotic regions we found previousty=£0 case¢  plied along the diagonal directioffrig. 8. Here they com-
only normal diffusive behavior with the mean square dis-ponent of the flux is equal to the component. One can
placement growing as The situation changes when+#0. appreciate that chaos is still more dominant, but a net flux in
As an example, let us examine the case 10 2, e;=0.13
analyzed abovésee Fig. 5. In Fig. 7 we show the corre- 0.5
sponding power spectra and mean square displacements 1
two moderate values of the harmonic amplitude=0.045
and e,=0.055. An anomalous superdiffusive behavior with |
exponenta~0.75 is seen in both statistical quantitieseat T wea R VR
=0.045. The exponent becomes-1 (the 1f noise case 1107 log(®)
by increasing the value &, (0.055. We remark that in spite 3
of the anomalous diffusive behavior of the chaotic dynamics®, -05 1
the average total flux remains equal to zero. This can b&
understood if we realize that chaotic trajectories here switcl
between confined rotating solutions and running ones. Th
running portions of the chaotic trajectories become longe
due to destabilization of the confined solutidtiserefore the
anomalous growing of the mean square displaceménit
both directions are equally probable. A different situation -15
takes place if the chaotic region lies between two running
attractors, as is the case for the 618 <0.21 interval in
Fig. 6. Here we have detected alsé-hbise behavior, due to FIG. 7. Velocity power spectra and mean square displacements
intermittency[ 34,48, but now we have long portions of the (insep for =102, e,=0.13. Solid line,=0.045. Dashed line,
trajectory running backwards interrupted by random and ine,=0.055. We have also plotted a long time portion of an intermit-
frequent bursts where it moves forward for a short time.tent chaotic trajectory a&,=0.045 to show the switching between
Now, due to desymmetrization of the backward attractor, theunning and localized behavior.
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FIG. 8. Same as Fig. 6 for transport along the diagonal direction 1).

chaotic region shows again in between running attractorsperatures <104, which corresponds to just a few kelvin

and stabilization also takes place. for the parameters of the Na-(@01) system. Going to
higher temperatures, as the ones employed for instance in
IV. EFFECT OF NOISE experimental measurements of atomic diffusion by Helium-

) o ) beam scattering techniqug28,49 (50—300 K one sees that

In many experimental situations a source of noise, due tne regular windows observed in Figs. 1 and 6 are blurred,
a finite temperature, is unavoidable. For the particular systemnd trajectories can explore the whole phase space due to a
and model we are studying here, namely, diffusion of Nafrequent escape from the attractors basins. This does not
atoms on a C{®01) surface, it has been shown that a Gaussmean, however, that the deterministic dynamics has no influ-
ian white noise term properly takes into account the temperaence on the transport properties. Sticking to the attractor ba-
ture effects on single diffusing adatorf28,49. This is jus-  sin of regular running orbits is still important at higher tem-
tified whenever the vibrational frequencies of the adatomfberatures. This can be appreciated in Fig)),gwhereR 0
are lower than the Debye frequency of the substrate. There-3x103 (T~50 K). A current reversal is seen to take
fore, we add a noise terré(t) to the scaled equations of place ate;~0.16, which was the value for the deterministic

motion (5), with correlation current reversal due to the hysteretic loop between the two
~ running attractorgcompare to Fig. b It is important to re-
(E(t)E(t"))y=2bka s5(t—t"). (13 mark that the mechanism for the observed current reversal is

) only of deterministic nature. In overdamped systems at low
The scaled temperatureks9=kT/27%V,. We keep the tem- forcing amplitudes, the interplay between frequency syn-
perature low, so thatT/Vs<1. The addition of weak noise chronization and noise can also induce current reversals
to a nonlinear dynamical system can modify considerably it$52,53.
local stability properties, but global stability may be rela- ltis also of interest to study the diffusion properties in the
tively conserved50]. In systems far from equilibrium, it can noisy case. Obtaining the effective diffusion coefficient as
influence the transport properties and induce transitions bedefined by Eq(9), we see a normal diffusive behavior until
tween different stable steady sta{éd]. Since we focused the transition valuee;~0.16, and anomalous diffusion of
mainly on the strong field regimg,;>V,, ore;>1/27%, a increasing exponent with larger forcing amplitudes. This
weak noise is going to act as a perturbation and it will allowsignals again the sticking of stochastic trajectories around the
the trajectories to explore larger areas of phase space. running solutions. For ever spreading trajectories, one can

By inspection of the bifurcation diagrams, we found thatdefine also anormal diffusion coefficientD,,,, through the

the structure shown in Figs. 1 and 6 is conserved for temsecond cumulant
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FIG. 9. (a) Normal diffusion coefficient, Eq(14), along thex FIG. 10. (a) Normal diffusion coefficient, Eq(14), alongx for

direction fork 9~3x 102 ande,=0.1, as a function of the scaled the same parameter values are as in Fig. 9 with the electric field
field amplitudee, (x=10"2). (b) Parallel component of the flux applied in the diagonal directionu(=1). (b) Parallel component of

for the same parameter values. the flux.
lim (x?(t)) — (x(t))?=2Do/t, (14)  of Na atoms on a symmetric Q@01 surface[28], assisted
t—oo by ac electric fields.

The two main questions addressed in our study have been
which always gives a finite value f@,,,. This is plotted in  the influence of the potential energy coupling on the trans-
Fig. 9a), scaled by the Einstein diffusion coefficieBt,  port and diffusive dynamics, and the effects induced by ad-

=k 6/b (free diffusion at the same parameter values thandition of a second harmonic field in the transport properties.
the flux, e,=0.1 andT~50 K (note that at small forcing e have seen that the coupling plays an important role when
e,<0.1 the ac field acts like subharmonidrive). The onset  the time-periodic field is applied along the diagonal, mainly

for Dpo#0 is close to the first threshold value destabilizing running periodic motions, and we have given a
e,=2b/72, and it reaches a plateau value close to the fre@uahtatlve e_xpla_natlon for that in tgrms of the periodic orbits

diffusion coefficienDq, until the current reversal takes place of the H_amﬂtoman(forc;e and frlctpn fr_e}e case. L_Jnlder a

at the second threshold value,=1/27, where it can be proper time asymmetng blharm'onlc driver, coeX|st!ng run-

considerably larger thaB,. A similar enhancement of free ning attractors in opposite directions are desymmetrized, giv-
diffusion close to the threshold value for deterministic run-"9 "€ t© d_|rected current ar!d current_re\_/er_sals. A net flux
ning solutions was found in overdamped systé5¥. of particles is observed both in the periodic intervals of the

Applying the field along the diagonal direction € 1) field amplitude(frequency locking intervajsas well as in

gives a different situation for the flux, Fig. 10. Here the f:haotic intervals lying between two running attractors. On

crent revesa akes place a0, i i far away TSeSI e Second temonie pice, e heerue hocs
from the adiabatic threshold value for deterministic running PP : ; 9 '

. . . therefore an increase of the interval for which frequency
solutions along the diagona; 0.23. The reason is that the locking is present. The only current reversal that eventuall
second frequency component of the drive induces Stab“izaéurviv?as ispthe oné roduci/ad bv an hvsteretic loo betweeyn
tion of periodic running attractors which should be otherwise . produ y an nysteret p bet

. . two running attractors with opposite velocities. The bihar-
chaotic, see Fig. 3. L s X i .

monic field is also able to induce a drastic cange in the trans-
port properties deep in a chaotic interval, by turning the dif-
fusive motion from normal to anomalousuperdiffusive
In the present work we have investigated in detail theand eventually to ballistic (1/noise due to intermittency.
deterministic dynamics of particles in two-dimensional peri- Upon the consideration of temperature effects through a
odic structures, under the action of frictional and time-Gaussian white noise term, we conclude that features of the
periodic forces. Such models are of interest for particle sepadeterministic dynamics show up until temperature values in-
ration in experimental devicegl2,18,19 or transport of side the experimental capabilities for our specific system. In
vortices in superconductorgl3], as well as for surface particular, a current reversal of flux appears close to the
smoothening 20,21 and selective control of self-diffusion threshold value for the onset of pure running solutions. Dif-
on metallic surface§22]. Specific parameters have been fusion is also enhanced with respect to free diffusion around

given to correspond to a semiempirical potential for diffusionthis threshold. The added dimension and the potential energy

V. CONCLUSIONS
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